Introduction

Current bacterial models are built from gene annotations, where gene function is deduced through homology-based algorithms and tools, such as RAST (RAPid Annotation using Subsystem Technology). Novel functional roles are often undiscovered when these annotations cannot be extrapolated from current annotation software.

Using flux-balance analysis (FBA) software, metabolic models can be used for *in silico* prediction of growth rates and biomass yield upon a variety of growth conditions.

Recent developments using multi-phenotype assay plates (MAPs) provide a high-throughput technique for profiling bacterial phenotypes upon a variety of growth conditions. Recent developments using multi-phenotype assay plates (MAPs) provide a high-throughput technique for profiling bacterial phenotypes upon a variety of growth conditions.

Coupling PM experiments with FBA software, metabolic models can be reconciled and optimized to best predict bacteria response and yield.

Experimental Design

Genomics

RAST Gene Annotations

Membrane Transport; K, P, H; Metabolism Polypeptide Synthesis and Degradation; Respiration

Phenomics

![Growth curve model](image)

\[\frac{\dot{y}}{y} = \frac{A - y}{1 + \exp\left(\frac{C}{y} - \lambda\right)} + 2 \]

Results

![Growth curves](image)

Table 1. A comparison between experimental results and FBA prediction.

<table>
<thead>
<tr>
<th>Phenotypic Result</th>
<th>FBA Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>48</td>
</tr>
<tr>
<td>NG</td>
<td>0</td>
</tr>
</tbody>
</table>

Questions

Why were these reactions missing from model?

Continue to model, sequence, and assay a broad and diverse set of bacteria – can we improve annotations?

Additional Information

https://vdm.sdsu.edu/pmanalyzer

https://edwards.sdsu.edu/dbbp

Funding by NSF: (DEB-1046413) (CNS-1305112) (MCB-1303800) (DUE-1259951)

Contact presenter at dcuevas08@gmail.com